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Abstract—Rooted phylogenetic networks are often used to represent conflicting phylogenetic signals. Given a set of clusters, a

network is said to represent these clusters in the softwired sense if, for each cluster in the input set, at least one tree embedded in the

network contains that cluster. Motivated by parsimony we might wish to construct such a network using as few reticulations as

possible, or minimizing the level of the network, i.e., the maximum number of reticulations used in any “tangled” region of the network.

Although these are NP-hard problems, here we prove that, for every fixed k � 0, it is polynomial-time solvable to construct a

phylogenetic network with level equal to k representing a cluster set, or to determine that no such network exists. However, this

algorithm does not lend itself to a practical implementation. We also prove that the comparatively efficient CASS algorithm correctly

solves this problem (and also minimizes the reticulation number) when input clusters are obtained from two not necessarily binary gene

trees on the same set of taxa but does not always minimize level for general cluster sets. Finally, we describe a new algorithm which

generates in polynomial-time all binary phylogenetic networks with exactly r reticulations representing a set of input clusters (for every

fixed r � 0).

Index Terms—Rooted phylogenetic networks, clusters, reticulate evolution, parsimony, computational complexity, polynomial-time

algorithms.

Ç

1 INTRODUCTION

THE traditional abstraction for modeling evolution is the
phylogenetic tree. The underlying principle of such a

tree is that the observed diversity in a set of species (or,
more abstractly, a set of taxa) can be explained by branching
events that cause lineages to split into two or more
sublineages [1], [2], [3]. However, there is increasing
attention for the situation when observed data cannot
satisfactorily be modeled by a tree. The field of phylogenetic
networks has arisen with this challenge in mind. Phyloge-
netic networks generalize phylogenetic trees, but within this
very general characterization there are many different
definitions and models [4]. In this paper, we are concerned
with rooted phylogenetic networks. Such networks assume
that the observed data evolve from a unique starting point
(the root) and that evolution is directed away from this root.
The main way these networks differ from rooted phyloge-
netic trees is the presence of reticulation nodes: nodes with
indegree 2 or higher. For the remainder of this paper, we
will use the term phylogenetic network, or just network, to
refer to rooted phylogenetic networks. We refer the reader
to [4], [5], [6], [7], [8] for detailed background information.

Constructing a phylogenetic network that “explains” the
observed data is a trivial problem if no optimality criteria
are imposed upon the constructed network. One simple
optimality criterion that has attracted a great deal of

attention in the literature, reticulation minimization, is to
compute a phylogenetic network that explains the observed
data but using as few reticulation events as possible. This is
an algorithmically hard problem, irrespective of the exact
construction technique that is being applied [8]. A related
optimality criterion, level minimization [9], [10], [11], [12], [13]
is motivated by the observation that a phylogenetic network
can be regarded as some kind of tree backbone decorated
with tangles of reticulate activity [4]. Here, the challenge is to
construct a phylogenetic network that explains the observed
data but such that the maximum number of reticulation
events inside any biconnected component, the level, is as low
as possible. Reticulation minimization is thus a global
optimality criterion, and level minimization is in some
sense a local optimality criterion; see Fig. 1. Both criteria will
have an important role in this paper.

The question remains, when does a phylogenetic net-
work explain the observed data? This depends very much
on the exact construction technique being applied. The
classical problem is motivated by the biological observation
that, although the evolution of a set of organisms might best
be explained by a phylogenetic network, the individual
genes of the organisms will generally undergo treelike
evolution [5]. In such a case, one can think of the gene trees
as being displayed by (i.e., topologically embedded within)
the species network. The reticulation nodes then have an
explicit biological interpretation as (for example) hybridiza-
tion, recombination or horizontal gene transfer events.
Hence, the following problem: given a set of rooted
phylogenetic trees, all on the same set of taxa, compute a
phylogenetic network with a minimum number of reticula-
tions that displays all the input trees. The problem is
already NP-hard (and APX-hard) for the case of two input
trees [14]. However, extensive research by different authors
has shown that, by exploiting the fixed parameter tract-
ability of the problem [15], [16], the two-tree problem can be
solved to satisfaction for many instances [17], [18]. The case

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 2, MARCH/APRIL 2012 517

. S.M. Kelk is with the Department of Knowledge Engineering (DKE),
Maastricht University, PO Box 616, Maastricht 6200 MD, The
Netherlands. E-mail: steven.kelk@maastrichtuniversity.nl.

. C. Scornavacca is with the Center for Bioinformatics (ZBIT), Tübingen
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of more than two input trees, or input trees that are not all
binary (i.e., some nodes have outdegree three or higher),
has been considerably less well studied [19], [20].

A parallel, and related, line of research concerns
“piecewise” assembly of phylogenetic networks. Whereas
the tree problem described above concerns the combination
of a small number of large hypotheses (e.g., gene trees) into
a phylogenetic network, an alternative strategy is to
combine a large number of small hypotheses into a
phylogenetic network. Examples of such small hypotheses
include rooted triplets (phylogenetic trees defined on size-3
subsets of the taxa) [21], [12], (binary) characters (e.g.,
whether or not the taxon is vertebrate) [22], [23], [24], [25],
and clusters (clades) [26], [7], [27]. Proponents of such
piecewise assembly techniques argue that in this way it is
easier (than with trees) to discard parts of the input that are
not well supported. In this paper, we focus specifically on
clusters, although the classical tree problem and all the
other piecewise construction techniques do play a second-
ary role. This secondary role is linked to the fact, as
observed in [8], that under certain circumstances all these
different models behave in a unified way. We shall return to
this point later.

Let us then say more about the cluster model. A cluster C
is a subset of the taxa and we say that a phylogenetic
network represents the cluster in the softwired sense if some
tree embedded in the network contains a clade equal to that
cluster [7]. In other words: some tree T embedded in the
network has an edge such that C is exactly the set of all taxa
reachable from the head of that edge by directed paths. The
general problem is, given a set of clusters, to construct an
optimal phylogenetic network that represents all the input
clusters. The set of input clusters can be constructed in an
ad hoc fashion, but often the set of clusters is generated by
extracting the set of clusters induced by a set of rooted
phylogenetic trees and then possibly excluding weakly
supported clusters. This is the technique applied in the
program DENDROSCOPE [28]. A disadvantage of this
technique is that some of the topology of the original trees
can be lost [8], but on the plus side it permits a focus on only
well-supported clades, which is a major concern of
practicing phylogeneticists.

In [7] it was shown, given a set of clusters, how to construct
a galled network with a small number of reticulations that

represents the clusters. However, given that galled networks
are a restricted subclass of phylogenetic networks, it was
unclear how far that algorithm actually minimizes the
number of reticulations (or the level) when ranging over
the entire space of phylogenetic networks, see, for example,
Fig. 2. This is the context in which the CASS algorithm was
developed [27]. The CASS algorithm, in some sense a natural
follow-up to the algorithm of [7], was formally shown to
produce solutions of minimum level whenever the minimum
level is at most two. However, the optimality of the CASS

algorithm for “higher-level” inputs, and the performance of
the algorithm in terms of minimizing number of reticula-
tions, remained unclear. On the practical side the good news
was that CASS produced solutions with fewer reticulations
and lower level than the algorithm from [7]. Intriguingly it
was also observed in [27] that, for several sets of input
clusters induced by two binary trees, the networks produced
by CASS had an identical number of reticulations to networks
generated by algorithms that aim to display the trees
themselves. This observation was the inspiration behind [8]
in which it was proven that, in the case of two binary trees, the
choice of construction technique (tree, triplets, characters,
clusters) does not affect the number of reticulations required.
However, this unification was shown to break down for data
obtained from three or more binary trees.

After [8] several important questions about clusters
remained open. Does CASS always minimize level? If not,
can we find a different algorithm that efficiently minimizes
level? Under which circumstances does CASS also minimize
the number of reticulations? In how far do the unification
results of [8] hold for two nonbinary trees?

The results in this paper settle many of these open
questions. First, we show that in the case of clusters
obtained from two not necessarily binary trees, a divide and
conquer algorithm using CASS as subroutine, called here
CASSDC and implemented in DENDROSCOPE [28], does
minimize both the number of reticulations, and the level.
Spin-off results from this include nonbinary versions of
several unification results from [8], culminating in the
observation that, in the case of clusters obtained from two
trees, CASSDC also computes the minimum number of
reticulations required to display the trees themselves (in the
sense of [29]), rather than just the clusters from the trees. We
also obtain deeper insights into why the two-tree case is so
special and not representative for the problem on three or
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Fig. 1. Example of a phylogenetic network with five reticulations. The
encircled subgraphs form its biconnected components, also known as its
“tangles.” This binary network has level equal to 2 since each
biconnected component contains at most two reticulations.

Fig. 2. (a) The output of the galled network algorithm [7] for C ¼
ffa; b; f; g; ig, fa; b; c; f; g; ig, fa; b; f; ig, fb; c; f; ig, fc; d; e; hg, fd; e; hg,
fb; c; f; h; ig, fb; c; d; f; h; ig, fb; c; ig, fa; gg, fb; ig, fc; ig, fd; hgg and (b) a
(simple) network with two fewer reticulations that also represents this set
of clusters.



more trees. In particular, the two-tree case seems to be best
understood as the only point at which a very natural lower
bound is guaranteed to be tight.

Second, we show that CASS does not, unfortunately,
always minimize level when the input data require
solutions of level 3 or higher. We give an explicit counter-
example and explain what goes wrong with the CASS

algorithm in this case.
To offset this negative result, we describe a polynomial-

time algorithm that shows, for every fixed natural number
k, how to determine whether a set of clusters can be
represented by a network with level k. This algorithm,
which is very different to CASS, is purely theoretical but
does give important insights into the underlying structure
of the cluster model. Also on the positive side we show that,
for sets of clusters induced by arbitrarily large sets of binary
trees, a simple polynomial-time algorithm can construct all
binary phylogenetic networks with r reticulations that
represent the clusters, for every fixed r � 0. To demonstrate
an important design principle first observed in [8] we give a
practical implementation of this algorithm, CLUSTISTIC,
which elegantly “bootstraps” an existing software package
for merging rooted triplets into a phylogenetic network.

To summarize, the results in this paper help advance our
understanding of the cluster model considerably. Never-
theless, many questions remain, and in the final section of
this paper we discuss a number of them. Perhaps the
biggest question, which is the motivation for the title of this
paper, concerns the fact that the cluster model so far has not
enjoyed the same kind of steady algorithmic improvements
witnessed in the tree literature. Why does it seem harder to
work with the clusters inside the trees than the trees
themselves? To what, exactly, can the elusiveness of clusters
be attributed?

2 PRELIMINARIES

Consider a set X of taxa. A rooted phylogenetic network (on
X ), henceforth network, is a directed acyclic graph with a
single node with indegree zero (the root), no nodes with
both indegree and outdegree equal to 1, and leaves
bijectively labeled by X . In this paper, we identify the
leaves with X . The indegree of a node v is denoted ��ðvÞ
and v is called a reticulation if ��ðvÞ � 2. An edge ðu; vÞ is
called a reticulation edge if its target node v is a reticulation
and is called a tree edge otherwise. When counting
reticulations in a network, we count reticulations with
more than two incoming edges more than once because,
biologically, these reticulations represent several reticulate
evolutionary events. Therefore, we formally define the
reticulation number of a network N ¼ ðV ;EÞ as

rðNÞ ¼
X

v2V :��ðvÞ>0

ð��ðvÞ � 1Þ ¼ jEj � jV j þ 1:

A rooted phylogenetic tree on X , henceforth tree, is simply a
network that has reticulation number zero. We say that a
network N on X displays a tree T if T can be obtained from
N by performing a series of node and edge deletions and
eventually by suppressing nodes with both indegree and
outdegree equal to 1. We assume without loss of generality

that each reticulation has outdegree at least one. Conse-
quently, each leaf has indegree one. We say that a network
is binary if every reticulation node has indegree 2 and
outdegree 1 and every tree node that is not a leaf has
outdegree 2.

Proper subsets of X are called clusters, and a cluster C is a
singleton if jCj ¼ 1. We say that an edge ðu; vÞ of a tree
represents a cluster C � X if C is the set of leaf descendants
of v. A tree T represents a cluster C if it contains an edge
that represents C. It is well known that the set of clusters
represented by a tree is a laminar family, often called a
hierarchy in the phylogenetics literature, and uniquely
defines that tree. We say that a network N represents a
cluster C � X “in the hardwired sense” if there exists a tree
edge ðu; vÞ of N such that C is the set of leaf descendants of
v. Alternatively, we say that N represents C “in the
softwired sense” if N displays some tree T on X such that
T represents C. In this paper, we only consider the
softwired notion of cluster representation and henceforth
assume this implicitly. A network represents a set of
clusters C if it represents every cluster in C (and possibly
more). The set of softwired clusters of a network can be
obtained as follows: For a network N , we say that a
switching of N is obtained by, for each reticulation node,
deleting all but one of its incoming edges. Given a network
N and a switching TN of N , we say that an edge ðu; vÞ of N
represents a cluster C w.r.t. TN if ðu; vÞ is an edge of TN and
C is the set of leaf descendants of v in TN . The set of
softwired clusters of N is the set of clusters represented by
all edges of N w.r.t. TN , where TN ranges over all possible
switchings [4]. It is also natural to define that an edge ðu; vÞ
of N represents a cluster C if there exists some switching TN
of N such that ðu; vÞ represents C w.r.t TN . Note that, in
general, an edge of N might represent multiple clusters, and
a cluster might be represented by multiple edges of N .

Given a set of clusters C on X , throughout the paper we
assume that, for any taxon x 2 X , C contains at least one
cluster C containing x. For a set C of clusters on X we define
rðCÞ as minfrðNÞjN represents Cg, we sometimes refer to
this as the reticulation number of C. The related concept of
level requires some more background. A directed acyclic
graph is connected (also called “weakly connected”) if there
is an undirected path (ignoring edge orientations) between
each pair of nodes. A node (edge) of a directed graph is
called a cut-node (cut-edge) if its removal disconnects the
graph. A directed graph is biconnected if it contains no cut-
nodes. A biconnected subgraph B of a directed graph G is
said to be a biconnected component if there is no biconnected
subgraph B0 6¼ B of G that contains B. A phylogenetic
network is said to be a level-� k network if each biconnected
component has reticulation number less than or equal to k.1

A level-� k network is called a simple level-� k network if
the removal of a cut-node or a cut-edge creates two or more
connected components of which at most one is nontrivial
(i.e., contains at least one edge). A (simple) level-� k
network N is called a (simple) level-k network if the
maximum reticulation number among the biconnected
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1. Note that to determine the reticulation number of a biconnected
component, the indegree of each node is computed using only edges
belonging to this biconnected component.



components of N is precisely k. For example, the network
in Fig. 1 is a level-2 network while the one in Fig. 2a is a
simple level-4 network. Note that a tree is a level-0 network.
For a set C of clusters on X we define ‘ðCÞ, the level of C, as
the smallest k � 0 such that there exists a level-k network
that represents C. It is immediate that for every cluster set
C rðCÞ � ‘ðCÞ, because a level-k network always contains at
least one biconnected component containing k reticulations.

We say that two clusters C1; C2 � X are compatible if
either C1 \ C2 ¼ ; or C1 � C2 or C2 � C1, and incompatible

otherwise. Consider a set of clusters C. The incompatibility

graph IGðCÞ of C is the undirected graph ðV ;EÞ that has
node set V ¼ C and edge set E ¼ ffC1; C2gjC1 and C2 are
incompatible clusters in C}. We say that a set of taxa X0 � X
is compatible with C if every cluster C 2 C is compatible with
X0, and incompatible otherwise.

We say that a set of clusters C on X is separating if it is
incompatible with all sets of taxa X0 such that X0 � X and
jX 0j � 2. We say that a set of clusters C on X is tangled [4] if:

1. IGðCÞ is connected and has more than one node;
2. every size-2 subset of X is incompatible with C.
Remember that here we assume that any taxon of X is

contained in at least one cluster C 2 C. Then, it can easily
be verified that, given a tangled set of clusters C on X , C
is separating.

The incompatibility graph and the concept of tangled
cluster sets are important because they highlight an
important difference between (the computation of) rðCÞ
and ‘ðCÞ. In [27] the authors show that, if ‘ðCÞ ¼ k, then a
level-k network that represents C can be constructed by
combining in polynomial time simple level-� k networks
constructed independently for each connected component of
IGðCÞ. The actual procedure is slightly more involved but it
shows in any case that a polynomial-time algorithm for
constructing simple level-� k networks can easily be
extended to a polynomial-time algorithm for constructing
level-� k networks. We will make use of this fact in Section 3.

Unfortunately, as has been observed by several authors,

the same procedure does not necessarily lead to networks that

have reticulation number rðCÞ (see, for example, [7, Fig. 3],

which is based on [22]). In other words, computation of rðCÞ
requires something more complicated than independently

optimizing each connected component of IGðCÞ. An impor-

tant special case, however, is when C is separating; in this case

any networkN that represents C is simple (or can be trivially

modified to become simple) and rðCÞ ¼ ‘ðCÞ. We will

formalize this in due course.
To conclude the preliminaries we note that, throughout

the paper, we often write that an algorithm is “polynomial
time” without formally specifying what the input size is.
Unless otherwise specified the input is a set of clusters C on
taxa set X . It is sufficient to take jCj þ jXj as a lower bound
on the size of the input. In some cases (such as Lemma 3 in
Section 3) jCj is at most a constant factor larger than jXj and
then it is sufficient to prove a running time polynomial in
jXj. In other cases a running time of the form OðjCjajXjbÞ is
obtained, for constants a and b, and this is clearly
polynomial in jCj þ jXj because ðjCj þ jXjÞ2 � jCkXj.

2.1 Structure of the Paper

To facilitate the mathematical exposition we build the
results of this paper up in a specific order, which differs
from the order presented in the introduction. We begin with
Section 3, A theoretical polynomial-time algorithm for construct-
ing level-k networks, where we prove that, for every fixed
k � 0, the problem of determining whether a level-k
network that represents C exists (and if so to construct such
a network) is solvable in polynomial time. This section is,
compared to the rest of the paper, comparatively self-
contained. In Section 4, From theory to practice: the importance
of ST-sets, we describe several fundamental properties of the
ST-set, a special structure that plays a central role
throughout the rest of the paper. In Section 5, Clusters
obtained from sets of binary trees on X , we show how, given a
set T of binary trees on X , and for each fixed r � 0, it is
possible to construct in polynomial time all binary
phylogenetic networks with reticulation number r that
represent all the clusters in the input trees. We also describe
CLUSTISTIC, which is our implementation of this algorithm
built on top of already-existing software. In Section 6,
Witnesses and a natural lower bound, we further develop the
theory surrounding the ST-set, explicitly relating it to the
computation of reticulation number. This is used exten-
sively in Section 7, The optimality and nonoptimality of CASS,
where we give both positive and negative results for the
CASS algorithm, and in the process develop a number of
powerful generalizations of unification results from [8].

3 A THEORETICAL POLYNOMIAL-TIME ALGORITHM

FOR CONSTRUCTING LEVEL-k NETWORKS

In this section, we prove that, for every fixed k � 0, the
problem of determining whether a level-k network exists
that represents C, and if so to construct such a network, can
be solved in polynomial time.

We first require some auxiliary lemmas and definitions.
The claims are intuitive but, because of subtleties that can
arise when dealing with heavily “redundant” networks,
the proofs are rather technical and have been deferred to
the Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCBB.2011.128.

For a node v let XðvÞ � X be the set of all taxa reachable
from v by directed paths. For an edge e ¼ ðu; vÞ we define
XðeÞ to be equal to XðvÞ.
Observation 1. Let C be a separating set of clusters on X . Let N

be any network that represents C. Then, each node of N has at
most one leaf child and for each cut-edge ðu; vÞ in N , jXðvÞj ¼
1 or XðvÞ ¼ X .

Proof. Deferred to the Appendix, which can be found on the
Computer Society Digital Library. tu

Lemma 1. Let C be a separating set of clusters on X . Let N be any
network that represents C. Then there exists a simple network
N� with at most one leaf-child per node such that
‘ðN�Þ � ‘ðNÞ.

Proof. Deferred to the Appendix, which can be found on the
Computer Society Digital Library. tu
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Observation 1 and Lemma 1 formalize the idea that any

network that represents a separating set of clusters is simple

or can easily be made simple by deleting certain “redun-

dant” parts of it. The following lemma shows that, in terms

of minimizing reticulation number or level, we can assume

without loss of generality that networks are binary.

Lemma 2. Let N be a phylogenetic network on X . Then, we can

transform N into a binary phylogenetic network N 0 such that

N 0 has the same reticulation number and level as N and all

clusters represented by N are also represented by N 0.

Proof. Deferred to the Appendix, which can be found on the

Computer Society Digital Library. tu

Note that, given a simple binary network N , each node of

N has at most one leaf child. Armed with these technical

results, we are ready to prove the main result of this section.

Lemma 3. Let C be separating set of clusters on X . Then, for

every fixed k � 0, it is possible to determine in polynomial

time whether a level-k network exists that represents C, and if

so to construct such a network.

Proof. From Lemmas 1 and 2 it is sufficient to focus on
simple binary networks. We assume then that, for fixed
k, there exists a binary simple level-k network N that
represents C. Let jXj ¼ n. Then, C will contain at most
2kþ1ðn� 1Þ clusters, because there are at most 2k trees
displayed by a simple level-k network, and each tree
represents at most 2ðn� 1Þ clusters. Thus, for fixed k, the
size of the input is polynomial in n. It follows from these
observations that whether a set of clusters is represented
by a given simple level-k network can be checked in
polynomial time.

It is known that, if the leaves of N are removed and all
nodes with both indegree and outdegree equal to 1 are
suppressed, the resulting structure will be a level-k
generator, defined in [11]. See also Fig. 3. For fixed k,
there are only a constant number of level-k generators
[30, Proposition 2.5]. Recall that the sides of a level-k
generator are defined as the union of its edges and its
nodes of indegree-2 and outdegree-0. For fixed k the
maximum number of sides ranging over all level-k
generators, is a constant.

For a cluster set C on X , we write x! y if and only if
every nonsingleton cluster in C that contains x, also
contains y. For example, for the cluster set of Fig. 4, we
have e! d and f ! e.

In the remainder of the proof, we illustrate a simple
algorithm for determining whether a binary simple level-
k network that represents C exists by attempting to
reconstruct such a network. Let g be the generator
underlying N . We only require polynomially many tries
to compute g, because there are only a constant number
of generators. So assume we know g. For each side of g,
we guess whether there are 0, 1, 2 or more than two
leaves on that side. For each side containing exactly one
leaf, we guess what that is. For each side s of g containing
two or more leaves, we guess the leaf sþ that is nearest to
the root on that side, and the leaf s� that is furthest from
the root on that side. For an example see Fig. 4. Note that,
since for each side we have only four options (0, 1, 2, or
more than 2 leaves), and in the latter case only sþ and s�

have to be chosen, it follows that we have a polynomial
number of guesses to try.

We will now show how to add the remaining leaves.
Note that we may fail to insert all leaves in the network.
This means that we made the wrong guess and that
another set of guesses has to be checked. We say that a
side s is lowest if it does not yet have all its leaves, and
there is no other such side s0 reachable from s. By
reachable we mean that in the underlying generator g,
there is a directed path from the head of side s to the tail
of side s0. Since N is a directed acyclic graph, until all
leaves in X have been added, there will always be a
lowest side. For example, the side F in Fig. 4d is lowest.
The idea is to add leaves to the lowest side s, until all its
leaves have been added. We then continue with
remaining lowest sides until we have reconstructed N .
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Fig. 3. The single level-1 generator and the four level-2 generators.
Here, the sides have been labeled with capital letters.

Fig. 4. An example of the execution of the algorithm outlined in Lemma 3 for the separating set of clusters C ¼ ffa; bg, fa; cg, fc; dg, fd; eg, fa; b; cg,
fc; d; eg, fd; e; fg, fc; d; e; fg, fb; d; e; fg, fb; c; d; e; fg; fag; fbg; fcg; fdg; feg; ffgg on X ¼ fa; b; c; d; e; fg. The value of k is fixed to 2. (a) The chosen
generator g is the generator 2c in Fig. 3. (b) We guess that the sides E, H, andG contain one leaf while the side F contains more than two leaves and
all other sides contain zero leaves. (c) We guess the single leaves on sides E, H, and G. (d) We guess the leaves sþ and s� on side F . (e) We
deduce the last leaf in F and we obtain a simple level-2 network on X . By a stroke of luck, our first guess represents C.



Given a lowest side s, with sþ and s� fixed, it is
possible to tell in polynomial time what the correct
remaining leaves for s are, as follows: Observe that a leaf
x that is on side s in N and which has not yet been added
has the property sþ ! x! s�. Furthermore, there is at
least one cluster C 2 C such that fx; sþ; s�g \ C ¼ fx; s�g.
There exists at least one such cluster because otherwise
fx; sþgwould be compatible with C, a contradiction since
C is separating. We call such a cluster a split cluster for side
s. Now, observe that for every split cluster C for side s,
and for every side t 6¼ s that contains two or more leaves
in N , either ftþ; t�g \ C ¼ ftþ; t�g or ftþ; t�g \ C ¼ ;.
This follows because the only edges in N that represent C
lie on side s. If this is not the case, our set of guesses was
incorrect and a new one has to be checked.

Now, consider any leaf y that has not yet been added
to the network. Assume that this leaf belongs to side t for
some t. We want to have a simple test to avoid wrongly
placing it on side s, with s 6¼ t. Side t will contain three
or more leaves in N , so we can assume that tþ and t�

exist. If sþ ! y! s� does not hold then it is immedi-
ately clear that y cannot be put on side s. So assume
(conversely) that this condition does hold, and for the
same reason assume there is a split cluster C for side s
that contains y. In other words, there is a cluster C such
that fy; sþ; s�g \ C ¼ fy; s�g. Since tþ ! y! t� holds, it
follows that C also contains tþ and t�, because any
cluster that contains y also contains t�, and we know that
C contains either both of tþ and t�, or neither of them.
However, there is no edge in N that can represent C: the
only edges that represent C lie on side s, but the fact that
s is the lowest side means that no cluster beginning on
side s can contain any leaves on side t. To summarize,
we have a simple test for determining whether a leaf
should be placed on side s. Once we have determined
the set of leaves that should be placed on side s, it is easy
to determine the correct order of those leaves by
inspecting ! relationships. Indeed, if q and p are two
leaves that belong to side s, and q is nearer to s� in the
network we aim to reconstruct, then obviously p! q.
Since C is separating there will be (by separation) some
cluster that contains q but not p, so q 6! p. If all leaves can
be added in such a way, we obtain a simple level-k
network on X and we can check in polynomial time if it
represents C. If it is not the case or we fail to insert at
least one leaf in the network, another set of guesses can
be checked until a simple level-k network representing C
(if any exist) is found. This concludes the proof. tu

The following corollary follows automatically from the

generality of the proof of Lemma 3.

Corollary 1. Let C be a separating set of clusters on X . Then, for

every fixed k � 0, it is possible to construct in polynomial time

all binary simple level-k networks that represent C.

Using Lemma 3, we can prove the following result:

Theorem 1. Let C be a (not necessarily separating) set of clusters

on X . Then, for every fixed k � 0, it is possible to determine in

polynomial time whether a level-k network exists that

represents C, and if so to construct such a network.

Proof. Recall that all tangled cluster sets are separating. It
was shown in [27] that the existence of a polynomial-time
algorithm for constructing a level-� k network from a
tangled cluster set, is sufficient to give a polynomial-time
algorithm for constructing level-k networks from general
cluster sets. (Specifically, several tangled cluster sets are
obtained by processing each nontrivial connected com-
ponent of the incompatibility graph of the original cluster
set [27], [4]). Hence, we can assume without loss of
generality that C is tangled. Lemma 3 is thus sufficient,
and we are done. tu
Note that the running time of this theoretical algorithm is

extremely high, and is already impractical for k ¼ 2 and
small values of n. This is because

1. the number of level-k generators grows rapidly,
lying between 2k�1 and k!250k [30], and for k ¼
1; 2; 3; 4; 5 is 1, 4, 65, 1993, 91454, respectively, [12],
[30], [31];

2. the number of edges (and thus also sides) in a
generator grows linearly in k [12];

3. the need to guess whether there are 0, 1, 2 or more
than two leaves on each side;

4. the need to make up to Oðn2Þ guesses per side (i.e.,
to guess s� and sþ for each side).

3.1 Rooted Triplets

It is interesting to note that the proof technique used in
Lemma 3 leads to a simplified proof, presented in the
following corollary, of a complexity result that was first
proven in [21]. (The algorithm in [21] yielded a much faster
running time, however). Let us first recall several definitions
related to rooted triplets. A (rooted) triplet on X is a binary
phylogenetic tree on a size-3 subset of X . We use xyjz to
denote the triplet with taxa x; y on one side of the root and z
on the other side of the root. For triplets, the notion of
“represent” can be formalized by the notion of “display”
introduced above. However, for triplets “consistent with” is
often used instead of “displayed by.” A triplet xyjz is
consistent with a phylogenetic networkN (andN is consistent
with xyjz) if xyjz is displayed by N . See Fig. 5 for an
example. Given a phylogenetic tree T on X , we let TrðT Þ
denote the set of all rooted triplets on X that are consistent
with T . For a set of phylogenetic trees T , we let TrðT Þ
denote the set of all rooted triplets that are consistent with
some tree in T , i.e., TrðT Þ ¼

S
T2T TrðT Þ. A set of triplets on

X is dense if, for every size-3 subset fx; y; zg � X , at least one
of xyjz, xzjy, yzjx is in the triplet set.

Corollary 2. Let R be a dense set of triplets on X . Then, for every
fixed k � 0, it is possible to determine in polynomial time
whether a binary simple level-k network exists that is
consistent with R, and if so to construct such a network.

Proof. As pointed out in [21] it is possible to determine in
polynomial time whether a given network is indeed
consistent with a set of input triplets. Then, the proof of
Lemma 3 holds here almost entirely. The only significant
difference concerns the adding of leaves to the lowest
side: a not yet allocated leaf x belongs on lowest side s if
and only if the triplet s�xjsþ is in the input. tu

We shall return to rooted triplets again later in the paper.
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4 FROM THEORY TO PRACTICE: THE IMPORTANCE

OF ST-SETS

The algorithm described in Section 3 is polynomial time but
only of theoretical interest because its running time is too
high to be useful in practice. In the rest of this paper, we
will focus on practical polynomial-time algorithms. In all
these algorithms the ST-set, which can informally be
thought of as treelike subsets of X , has a central role. We
begin by formally defining ST-sets and describing their
basic properties. We will expand upon these basic proper-
ties in subsequent sections of the paper.

4.1 Definition and Basic Properties of ST-Sets

Given a set S � X of taxa, we use C n S to denote the result
of removing all elements of S from each cluster in C and we
use CjS to denote C n ðX n SÞ (the restriction of C to S). We
say that a set S � X is an ST-set with respect to C, if S is
compatible with C and any two clusters C1; C2 2 CjS are
compatible. Note that, unlike in [27], we allow the
possibility that S ¼ ; or S ¼ X . (We say that an ST-set S
is trivial if S ¼ ; or S ¼ X ). An ST-set S is maximal if there is
no ST-set T with S � T , see Fig. 6 for an example.

Informally, the maximal ST-sets of C are the result of
repeatedly collapsing pairs of taxa compatible with C for as
long as possible; we can think of them as “islands of
laminarity” within the cluster set.

ST-sets first explicitly appeared in [27] but, as we shall
see in due course, they implicitly arose earlier in the
recombination network literature. An important feature of ST-
sets is that there can in general be very many of them. For
example, suppose C contains only jXj ¼ n singleton clusters;
then C has 2n ST-sets. However, as the following technical
results show, C will have at most n maximal ST-sets, and
they will partition X , i.e., they are mutually disjoint and
entirely cover X . Several of the proofs have been deferred to

the Appendix, which can be found on the Computer Society
Digital Library.

Lemma 4. Let C be a set of clusters on X and let S1 6¼ S2 be two
ST-sets of C. If S1 \ S2 6¼ ; then S1 [ S2 is an ST-set.

Proof. Deferred to the Appendix, which can be found on the
Computer Society Digital Library. tu

Corollary 3. Let C be a set of clusters on X and let S1 6¼ S2 be
two maximal ST-sets of C. Then, S1 \ S2 ¼ ;.

Corollary 4. Let C be a set of clusters on X . Then, there are at
most n maximal ST-sets with respect to C, they are uniquely
defined and they partition X .

Proof. Deferred to the Appendix, which can be found on the
Computer Society Digital Library. tu

Lemma 5. The maximal ST-sets of a set of clusters C on X can be
computed in polynomial time.

Proof. Deferred to the Appendix, which can be found on the
Computer Society Digital Library. tu

Corollary 4 and Lemma 5 are perhaps not so surprising,
but we have nevertheless proven them rigorously to
highlight the fact that computing maximal ST-sets is not a
complexity bottleneck. In later sections, we shall see that
there is a link between NP-hardness and maximal ST-sets,
but that the hardness lies in selecting certain maximal ST-
sets with special properties, not in the computation of the
maximal ST-sets per se.

Let T be a set of trees, where each T 2 T is a tree on X .
For a tree T , we write ClðT Þ to denote the set of clusters
induced by edges of T , i.e., C 2 ClðT Þ if and only if some
edge of T represents C. We let ClðT Þ ¼ [T2T ClðT Þ.
Whenever, we (reasonably) assume that all singleton
clusters are present in the input,2 it is easy to see that every
cluster set C on X can be written as ClðT Þ for some T as
follows: We take any proper coloring of IGðCÞ (i.e., map the
nodes of IGðCÞ to colors such that no two adjacent nodes
have the same color) and use the resulting colors to
partition C. Clusters that have been colored the same are
all mutually compatible, so can be represented by a single
tree corresponding to that color. Finally, whenever a subset
of clusters pertaining to a color does not cover all elements
of X , the missing taxa can be attached to the root. An
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Fig. 6. Consider the set of clusters C shown above. The maximal ST-sets
are fag; fbg; fcg; fdg; feg; ffg; fgg; fh; i; jg. fh; i; jg is the only nonsin-
gleton maximal ST-set, while fh; ig is the only nonsingleton, nonmaximal
ST-set. Note that, if cluster fh; ig was removed, fh; i; jg would remain
the only nonsingleton maximal ST-set, but fh; ig and fi; jg would both be
nonsingleton, nonmaximal ST-sets.

Fig. 5. A phylogenetic tree T (a) and a phylogenetic network N (b,c,d); (b) illustrates in red that N displays T (deleted edges are dashed);
(c) illustrates that N is consistent with (among others) the triplet cdjf (deleted edges are again dashed); (d) illustrates that N represents (among
others) cluster fc; d; eg in the softwired sense (dashed reticulation edges are “switched off”).

2. The presence or absence of the singleton clusters in the input does not
change the complexity of the problems we study because it is trivial to
modify a network without raising its reticulation number or level such that
it also represents all the singleton clusters.



obvious corollary of this is that the chromatic number of
IGðCÞ is a lower bound on the cardinality of T .

Whenever C ¼ ClðT Þ there is an important relationship
between the nodes and edges of trees in T , and the
(maximal) ST-sets of C. Let T be a (not necessarily binary)
tree on X . In Section 2, we defined when an edge of a tree
represents a cluster. Here, we extend this definition to nodes
of trees. We say that a node v of T represents C if C is equal
to the union of the clusters represented by some (not
necessarily strict) subset of its outgoing edges. Note that if
an edge ðu; vÞ represents a cluster C then so does v.

Lemma 6. Let T ¼ fT1; . . . ; Tmg be a set of trees on X . Let
; � X0 � X be compatible with ClðT Þ. Then, for each Ti 2 T
there exists an edge ei or a node vi in Ti such that ei or vi
represents X0.

Proof. Consider an arbitrary tree Ti 2 T . Every cluster in
ClðTiÞ is either disjoint from X0, a superset of it, or a
subset of it, otherwise X0 would be incompatible with
ClðT Þ. If some edge of Ti represents X0 then we are done.
Otherwise, consider some node v furthest from the root
which represents a cluster C such that X0 � C. Such a v
must exist because if necessary we can take the root as v.
C is equal to the union of the clusters represented by
some subset of the edges outgoing from v. Each cluster
represented by an outgoing edge of v is either disjoint
from X0 or a subset of it, because of the assumption on
the distance of v from the root. For the same reason, X0
intersects with at least two such outgoing edge clusters
of v. But when X0 intersects with such a cluster it must
contain it entirely, so X0 is equal to the union of some
subset of the clusters represented by edges outgoing
from v. Hence, v represents X0. tu

The following corollary is automatic.

Corollary 5. Let T ¼ fT1; . . . ; Tmg be a set of binary trees on X .
Let ; � X0 � X be a set compatible with ClðT Þ. Then, for each
Ti 2 T there exists an edge ei such that ei represents X0.

Note that Lemma 6 and Corollary 5 hold in particular for
(maximal) ST-sets of ClðT Þ, because all ST-sets are
compatible with ClðT Þ. Hence, the two following straight-
forward extensions to ST-sets, which we will use exten-
sively in the next section. Recall that an ST-set S is trivial if
S ¼ ; or S ¼ X .

Corollary 6. Let T ¼ fT1; . . . ; Tmg be a set of binary trees on X .
LetS be a nontrivial ST-set with respect toClðT Þ. Then, for each
Ti 2 T there exists an edge ei in Ti such that ei represents S.

Corollary 7. Let T ¼ fT1; . . . ; Tmg be a set of binary trees on X .
Then, ClðT Þ contains at most 2ðn� 1Þ nontrivial ST-sets,
and for every such ST-set S of ClðT Þ and every tree Ti 2 T
there exists a unique edge ei of Ti such that XðeiÞ ¼ S and
such that the subtree rooted at the head of ei is the unique tree
that represents exactly the cluster set ClðT ÞjS.

Proof. Given any tree Ti 2 T , ClðTiÞ will contain exactly
2ðn� 1Þ edges and consequently 2ðn� 1Þ clusters. Since
an ST-set of ClðTiÞ is by definition compatible with
ClðTiÞ, each ST-set of ClðT Þ is a subset of the cluster set
ClðTiÞ (for any i) and there are thus at most 2ðn� 1Þ

ST-sets. Moreover, by definition, for any ST-set S of

ClðT Þ we have that the set ClðT ÞjS is compatible. Since

two nonisomorphic binary trees on the same taxa set

induce at least two incompatible clusters, this con-

cludes the proof. tu

Informally, Corollary 7 states that when T consists solely

of binary trees, each nontrivial ST-set corresponds to some

subtree that is common to all trees in T .

5 CLUSTERS OBTAINED FROM SETS OF BINARY

TREES ON X
Let T be a set of binary trees on X . In this section, we prove

that, for fixed r � 0, it is possible to construct in polynomial

time all binary phylogenetic networks with reticulation

number r that represent ClðT Þ. We also describe our new

program CLUSTISTIC which implements this algorithm.

CLUSTISTIC is in itself an important “proof of concept:” it

has been rapidly prototyped by, building on insights from

[8], slightly modifying existing software that was originally

conceived to reconstruct binary level-k networks not from

clusters but rooted triplets.
Let N be a network on X and let T 0 be some tree on

X0 � X . We say that T 0 is a Subtree Below a Reticulation (SBR)

of N if there is a reticulation node v in N such that no

reticulation nodes v0 6¼ v are reachable from v by a directed

path, and that the subnetwork rooted at v (or, when v has

outdegree exactly 1, the child of v) is exactly equal to T 0. It is

easy to show that (by virtue of its acyclicity) every network

contains at least one SBR [21]. A simple though critical

observation is

Observation 2. If T 0 is an SBR of a network N on X that

represents a cluster set C, and T 0 has taxa set X0, then X0 is an

ST-set with respect to C.

We will make repeated use of this throughout the rest of

the paper. (Note however that, in general, multiple SBRs

might correspond to a single ST-set).
Given a network N with an SBR T we denote by N nT

the network obtained from N by deleting T and for as long

as necessary applying the following tidying-up operations

until they are no longer needed: deleting any node with

outdegree zero that is not labeled by an element of X ;

suppressing all nodes with indegree and outdegree both

equal to 1; replacing multiedges with single edges; deleting

nodes with indegree-0 and outdegree-1, see Fig. 7.
We call ðS1; S2; . . . ; SpÞðp � 0Þ a (maximal) ST-set sequence

of C if S1 is a (maximal) ST-set of C, S2 is a (maximal) ST-set

of C n S1, S3 is a (maximal) ST-set of CnS1nS2 and so on. Such

a sequence is additionally a tree sequence if all the clusters

in CnS1n � � � nSp are mutually compatible, i.e., can be

represented by a tree. We denote by p be the length of the

sequence; p ¼ 0 denotes the empty tree sequence.

Lemma 7. Let N be a network that represents some cluster set C
on X . Then, there exists a sequence of SBRs that need to be

removed to prune N into a tree, and this corresponds to an ST-

set tree sequence of C of length rðNÞ.
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Proof. If N is a tree then there is an empty tree sequence.
Otherwise, N has an SBR T 0 with taxa set X0 and the
network N nT 0 represents the cluster set C n X0. Clearly
rðN 0Þ < rðNÞ. By observation 2, we let S1 equal X0 and
d ¼ rðNÞ � rðN 0Þ. If d > 1 then we let S2; . . . ; Sd all equal
;, the empty ST-set. We use these empty ST-sets to model
the situation when removing the SBR would cause
multiple reticulation nodes to disappear simultaneously.
Now, N 0 also has at least one SBR, so we can iterate the
whole process. We can repeat this until we obtain a tree:
at this point we will have an ST-set tree sequence of
length exactly rðNÞ. tu

In the following observation, we make use of the fact
that the operation N nT is also meaningfully defined
when the tree T is exactly the subtree rooted at some node
of N .

Observation 3. Let T ¼ fT1; . . . ; Tmg be a set of binary trees on
X . Let S be a nontrivial ST-set of ClðT Þ. Then, ClðT Þ n S ¼
ClðT 0Þ where T 0 is a set of at most m binary trees
fT 01; . . . ; T 0mg on X n S with T 0i ¼ Ti n Tv, where ei ¼ ðu; vÞ
is the edge of Ti that represents S (which exists by Corollary 7)
and Tv is the subtree rooted at v.

Theorem 2. Let T ¼ fT1; . . . ; Tmg be a set of binary trees on X .
Then, for a constant r � 0 it is possible to construct in
polynomial time all binary networks with reticulation number
at most r that represent ClðT Þ (if any exist).

Proof. Without loss of generality assume we wish to
construct all such networks with reticulation number
exactly r. Let us suppose that at least one such network N
exists. By Lemma 7, there is an ST-set tree sequence S ¼
ðS1; . . . ; SrÞ for ClðT Þ and this corresponds to a sequence
of SBRs that, when removed, will prune N into a tree. Let
jXj ¼ n. Now, note that by Observation 3 and Corollary 7
there are at most OðnrÞ ST-set tree sequences, which is
polynomial in n for fixed constant r. Swill be one of these,
so we can find S in polynomial time. It remains to show

how, assuming we have found S, we can reconstruct N .

First, note that for a binary tree T onX , T is the unique tree

on X that represents ClðT Þ. The clusters that still remain

after removing Sr can be represented by a tree, and in

particular (by Observation 3) by a unique binary tree. We

call this tree Nr. We want to obtain Nr�1 by inserting (a

tree corresponding to) Sr intoNr. In particular, we wish to

introduce a new reticulation node into Nr below which a

tree T (itself binary and unique by Corollary 7) that

represents Sr will be attached. We have two possibilities

to do this: we subdivide two (not necessarily distinct)

edges and use these as the tails of the new reticulation

edges, see Figs. 8a and 8b, or we subdivide one edge once

and use two identical reticulation edges, see Fig. 8c. Note

that, if we only subdivide one edge once, we actually

create a multiedge and by our definition of phylogenetic

network such edges are not allowed. However, it might

be necessary to create such multiedges during intermediate

iterations to ensure that all phylogenetic networks,

including “redundant” ones, are constructed.
Unfortunately, we do not know in general which

edge(s) of Nr to subdivide to create the new connection
point(s). However, there are only polynomially many
edges in Nr, so we simply try them all. Then we repeat
the process, inserting Sr�1 into Nr�1 to obtain Nr�2, and
so on until we have obtained N0. Given that r is a
constant we can test in polynomial time whether N0

represents all the clusters in C (see proof of Lemma 3).
Just as in the similar algorithm described in [21]

there are several slight technicalities that should be
noted. Whenever some Si ¼ ; we use a “dummy”
taxon (i.e., some taxon not in X ) as the tree that we
attach below a reticulation. The function of this is to
ensure that subsequent iterations can subdivide the
edge leaving the reticulation, i.e., it is a placeholder.
(This will be necessary when the removal of a single
SBR caused the disappearance of two or more
reticulations). These dummy taxa can be removed just
before N0 is inspected to check whether it represents C.
Any N0 that at this point still contains a dummy taxon
whose parent is a reticulation, should be rejected,
because it means at least one reticulation was not used.
Second, when we construct the tree Nr we actually add
a “dummy root” which is simply a new node �0 and a
single edge from ð�0; �Þ where � is the root of Nr. This
deals with the situation when the removal of some SBR
caused the current root to disappear and a new root to
take its place. At the end, �0 and the edge leaving it
should be removed. Finally, note that any multiedges
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Fig. 8. The different ways of adding a reticulation back into a network, as discussed in the proof of Theorem 2. (a) Two different edges are
subdivided; (b) one edge is subdivided twice; (c) one edge is subdivided once, under which a multiedge is placed.

Fig. 7. Let C be some set of clusters represented by the network on the
right. If we guess that ST-set S ¼ fh; i; jg corresponds to an SBR and
remove it, we obtain the tree on the left. To reverse the process we add
(a tree corresponding to) S below a reticulation node whose incoming
edges subdivide edges x and y.



created by intermediate iterations of the algorithm
should all have disappeared (i.e., have been subdi-
vided by reticulation edges) by the time N0 has been
reached; for this reason we reject any N0 that still
contains multiedges.

The network N we would like to reconstruct will
eventually be found as some N0, and given that we made
no assumptions about N this shows that the algorithm
constructs all possible N . tu

Corollary 8. Let T ¼ fT1; . . . ; Tmg be a set of binary trees on X .
Then, for a constant k � 0 it is possible to construct in
polynomial time all binary simple level-� k networks that
represent ClðT Þ (if any exist).

Proof. For each network produced by the algorithm
described in Theorem 2, we can easily check in
polynomial time whether it is biconnected. tu

It is worth noting at this stage an important link with the
rooted triplet literature. Recall the following proposition
and lemma from [8], a paper in which the relationship
between trees, clusters and triplets was discussed more
broadly. Proposition 1 refers to not necessarily binary trees.

Proposition 1 (Van Iersel, Kelk [8]). For any set T of trees on
the same set X of taxa, any phylogenetic network on X
representing ClðT Þ is consistent with TrðT Þ.

Lemma 8 (Van Iersel, Kelk [8]). Let N be a phylogenetic
network on X and T a set of binary trees on X . Then, there
exists a binary phylogenetic network N 0 on X such that

1. N 0 has the same reticulation number and level as N ,
2. if N displays all trees in T then so too does N 0,
3. if N is consistent with TrðT Þ then so too is N 0 and
4. if N represents ClðT Þ then so too does N 0.

Suppose that we have an Algorithm A which, for each
fixed r � 0, can construct in polynomial time every binary
network consistent with TrðT Þ that has at most r reticula-
tions, where T is a set of binary trees on X . Suppose A0 is an
algorithm that examines in turn every network output by A
and rejects it if it does not represent ClðT Þ (such a filtering
step can be done for each network in polynomial time for
fixed r, see proof of Lemma 3). If there exists a network N
on X with at most r reticulations that represents ClðT Þ then
by Lemma 8 there exists a binary network N 0 on X with this
property. Furthermore, in that case N 0 will by Proposition 1
be consistent with TrðT Þ. The algorithm A0 is thus
guaranteed to eventually find N 0. The practical consequence
of this is that, simply by adding a filtering step, triplet
software can in some cases easily be modified to work for
clusters. Indeed, they can be used to determine whether a
network with r reticulations that represents C exists and if
so to construct all binary networks with this property. As
proof of concept, we have taken the triplet software
SIMPLISTIC (based on the ideas described in [21]), removed
its biconnectedness-checking subroutine so that it
generates all binary networks with up to r reticulations (and
not just all simple level-� r binary networks), and added
the cluster filtering step as described above. This whole
process took only one day of programming, and lead to the
new software package CLUSTISTIC which implements

the result described in Theorem 2. This software is available
for download at http://skelk.sdf-eu.org/clustistic.

6 WITNESSES AND A NATURAL LOWER BOUND

The results in this section will help us develop some
insights into how a phylogenetic network can be effi-
ciently dismantled (respectively, reconstructed) by itera-
tively removing (respectively, reattaching) reticulations.
These results, and the bridges they build with other parts
of the phylogenetic network literature, will be used
heavily in Section 7.

Let T ¼ fT1; . . . ; Tmg be a set of m not necessarily binary
trees on X . Let S be a nontrivial ST-set of ClðT Þ. We know
by Lemma 6 that for each Ti 2 T there is an edge ei or node
vi in Ti that represents S. We define a witness for S in Ti as
follows: If Ti contains an edge ei ¼ ðui; viÞ that represents S,
let ti ¼ ui. Otherwise, from Lemma 6 there exists a node vi
in Ti that represents S, and let ti ¼ vi. Then, a witness for S
is any leaf descendant wj 2 ðXðtiÞ n SÞ. The only ST-sets
with no witnesses are X and the empty set, hence the
restriction to nontrivial ST-sets. As an example consider the
four trees T in Fig. 9. Consider the ST-set f1g of ClðT Þ. In
the top-left tree and bottom-left tree the only possible
witness for this is taxon 5. In the top-right tree the only
witness is taxon 3, and in the bottom-right tree the only
witness is taxon 2.

Given a set of trees T on X and a nontrivial ST-set S of X ,
let W � X be any subset of taxa such that, for each tree
Ti 2 T , there exists x 2W that is a witness for S in Ti. We
call such a set a witness set of S in T . Clearly, there exist W
such that jW j � m. For example, for the set of trees in Fig. 9,
f2; 3; 5g is a possible witness set for f1g.

The two following simple observations are critical.

Observation 4. Let T be a set of trees on X , S a nontrivial ST-
set of X and W a witness set of S in T . Then, for each C 2
CðT Þ such that S � C, W \ C 6¼ ;.

Proof. For each cluster C 2 CðT Þ there is at least one edge
e ¼ ðu; vÞ in some Ti 2 T such that e represents C. Let
eiðviÞ be the edge (node) in Ti that represents S. Given
that S � C, all leaf descendants of v must also include all
leaf descendants of the tail of eiðviÞ. In particular, all
possible witnesses for S in Ti. tu
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Fig. 9. Let T be the set of four trees shown here. The CASS algorithm
returns a network N that represents ClðT Þ where rðNÞ ¼ ‘ðNÞ ¼ 4.
However, Fig. 10 shows that the true value of rðClðT ÞÞ ¼ ‘ðClðT ÞÞ is at
most 3.



To understand the meaning of Observation 4 it is helpful
to again consider the example of ST-set f1g in the context of
Fig. 9. We see that any cluster that is a strict superset of f1g
must contain at least one of the taxa from f2; 3; 5g.
Observation 5. Let T ¼ fT1; . . . ; Tmg be a set of trees on X such

that m � 2 and let S be a nontrivial ST-set of C. Let W be a
smallest cardinality witness set of S in T . If jW j ¼ m then for
each C 2 CðT Þ such that S \ C ¼ ;, W n C 6¼ ;.

Proof. Note that it is not possible for a witness for S in a tree
Ti 2 T to also be a witness for S in Tj 6¼ Ti, because then
jW j � m� 1. So each witness in W comes from a
different tree in T . Suppose then that there is some C 2
CðT Þ such that S \ C ¼ ; and W n C ¼ ;. Clearly, since
W 6¼ ;, W � C, and jCj � jW j � 2. Furthermore, some
edge ei in some Ti represents C. Combining the fact that
S \ C ¼ ; and W � C leads us to the conclusion that all
elements of W are possible witnesses for S in Ti. But then
some element x of W is a witness for S both in Ti and
also in some Tj 6¼ Ti, contradiction. tu

As mentioned in the proof of Observation 5, a witness set
W (for a given ST-set S) with m� 1 or fewer elements exists
if and only if the possible witnesses for S ranging across the
different Ti are not all mutually disjoint. If a witness set
with m� 1 or fewer elements does not exist then in the
following results any witness set with m elements will turn
out to be sufficient, as a consequence of Observation 5. This
will become clear in due course.

6.1 A Natural Lower Bound on rðT Þ that Is Tight for
Clusters Obtained from Two (Not Necessarily
Binary) Trees

Lemma 9. Given a set of clusters C on X , there exists a maximal
ST-set tree sequence ðS1; S2; . . . ; SpÞ such that p � rðCÞ.

Proof. The proof is equivalent to that of Lemma 7 but for the
fact that no empty ST-set is inserted in the maximal ST-
set tree sequence. tu

We define the maximal ST-set lower bound for C (MST
lower bound for short) as the cardinality of the smallest
maximal ST-set tree sequence for C. By Lemma 9 this is a
genuine lower bound on rðCÞ. In general, it is however a
rather weak lower-bound: consider the set Ci of clusters on
Xi ¼ fr; x1; . . .xig defined by ffr; xjgj1 � j � ig. The MST
lower bound for this cluster set is always 1, while rðCiÞ
rises linearly in i. However, as we shall see the tightness of
the bound is to some extent correlated with the number of
trees which generate the clusters, with two trees being a
special case. We first require some definitions and
auxiliary lemmas.

Consider a network N on X . Let X0 ¼ f�g [ X where
� 62 X is some arbitrary symbol representing the root of N .
Let T be some tree on X� where X� \ X0 ¼ ; and let H be a
subset of X0. We can obtain a new network N 0 on ðX� [ XÞ
by hanging T from H in N . Informally, N 0 is obtained by
hanging the tree T beneath a new reticulation which has jHj
incoming edges, where each such incoming edge begins
“just above” an element of H. Formally, the transformation
is as follows: First, we add a new edge ðr; r0Þ to T , where r0

is the root of T and r is a new node. For each h 2 H n f�g,

we then subdivide the unique edge entering h; let hp be the
new parent (with indegree and outdegree 1) of h. For each
h 2 Hnf�g, we then add a new edge ðhp; rÞ. Finally, if � 2 H
we also add an edge from the root of N to r; we call this a
root edge. It is clear that rðN 0Þ ¼ rðNÞ þ jHj � 1.

Lemma 10. Let T ¼ fT1; . . . ; Tmg be a set of m trees on X and
let C ¼ ClðT Þ. Let S be a maximum ST-set of C. Let N be any
network on X n S that represents C n S. Then, it is possible to
extend N to obtain a new network N 0 that represents C such
that rðN 0Þ � rðNÞ þ ðm� 1Þ.

Proof. Let TS be the unique tree on taxa set S such that
CðTSÞ ¼ CjS. Let W be a minimum-cardinality witness set
for S in T . Clearly, 1 � jW j � m. If jW j ¼ m, then we let
N 0 be the network obtained by hanging TS from W in N .
If jW j < m then we let N 0 be the network obtained by
hanging TS from W [ f�g in N . Clearly, rðN 0Þ � rðNÞ þ
ðm� 1Þ. It remains only to show that N 0 represents C.
Consider any cluster C 2 C. There are three cases to
consider 1) If C � S then N 0 clearly represents C because
TS already represented CjS. 2) If S � C then consider
C0 ¼ C n S. Clearly, N represents C0. By Observation 4,
there exists some w 2W \ C. Since W \ S ¼ ;, this
implies that there exists some w 2W \ C0.

To see that N 0 represents C consider any tree
displayed by N that represents C0. We can extend this
tree by “switching on” the new reticulation edge that
begins above w, i.e., the edge ðwp; rÞ, and “switching off”
the remaining reticulation edges. 3) If S \ C ¼ ;, then
there are two subcases. a) If jW j < m, then we can
“switch on” the root edge that enters the reticulation
above TS , i.e., the edge ð�; rÞ, and “switch off” all other
reticulation edges entering TS . b) If jW j ¼ m, then by
Observation 5 there exists w 2W n C. In N 0, we can thus
“switch on” the new reticulation edge that begins above
w, and “switch off” the rest. tu

Theorem 3. Let T ¼ fT1; . . . ; Tmg be a set of m trees on X and
let C ¼ ClðT Þ. Let p be the MST lower bound for C. Then,
rðCÞ � ðm� 1Þp.

Proof. Given a tree T and a node u of T , we denote by XðT Þ
the label set of T and by Tu the subtree rooted at u. From
Lemma 9, we already know that p � rðCÞ. Now, let
ðS1; S2; . . . ; SpÞ be a maximal ST-set tree sequence for C.
We will complete the proof by showing how to explicitly
construct a network N with reticulation number at most
ðm� 1Þp that represents C. We define Ci, 1 � i � p, as
CnS1n � � � nSi and C0 as C. By Lemma 6, it can be seen that
for each i, Ci ¼ ClðT iÞ where T i is a set of at most m
trees on XnS1n � � � nSi and where T 0 ¼ T . In particular,
T iþ1 can be obtained from T i as follows: Given a tree Tj
in T i, let (without loss of generality) uj be the node of Tj
such that Si is equal to the union of the clusters
represented by some not necessarily strict subset of its
outgoing edges. Such a uj exists by Lemma 6. Let Q ¼
fv1; . . . ; vkg be the set of children of uj such that for each
v 2 Q, XðTvÞ contains at least one element of Si. The set
of trees T iþ1 can be obtained from T i by computing, for
each tree Tj in T i the tree Tj n Tv1

. . . n Tvk , i.e., pruning
away the subtrees corresponding to Si and tidying up
the resulting tree.
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Now, consider Cp. Let Np be the unique tree such
that CðNpÞ ¼ Cp; Np will be equal to the single tree in
T p. By Lemma 10, we can obtain a network Np�1 with
ðm� 1Þ reticulations that represents Cp�1 by taking
T ¼ T p�1, N ¼ Np, and S ¼ Sp in the proof of that
lemma. We iterate this process for p� 2; p� 3; . . . 1. This
lasts at most p iterations in total, and each iteration
adds ðm� 1Þ to the reticulation number, thus, yielding
a network N0 that represents C with reticulation number
(at most) ðm� 1Þp. tu

Corollary 9. Let T ¼ fT1; T2g be a set of two not necessarily
binary trees on X and let C ¼ ClðT Þ. Let p be the MST lower
bound for C. Then, rðCÞ ¼ p.

In [8], it is shown that it is NP-hard and APX-hard to
compute rðCÞ where C is the set of clusters obtained from
two binary trees on X . The following corollary is thus
immediate.

Corollary 10. The computation of the MST lower bound is NP-
hard and APX-hard.

It is interesting to note that Lemma 9 and Corollary 10
have, in some sense, already appeared in the phylogenetic
network literature, albeit in the language of recombination
networks. Specifically, in [8] we highlight that the phyloge-
netic network model described there (and also used here) is
in a strong sense identical to the recombination network
model under the assumption of an all-0 root, the infinite
sites model and multiple crossover recombination. The
computational lower bound described in [25, Algorithm 3]
is, taking this equivalence into account, essentially identical
to the MST lower bound. In [32], it is shown that computing
this bound is NP-hard, by reduction from MAX-2-SAT. The
same authors also give an exponential-time dynamic
programming algorithm for computing the bound, improv-
ing upon an algorithm with superexponential running time
given in [25].

7 THE OPTIMALITY AND NONOPTIMALITY OF CASS

The CASS algorithm for constructing simple level-k net-
works was presented in [27]. The algorithm was designed to
produce solutions of minimum level, not of minimum
reticulation number. However, when the input is a
separating set C of clusters on X , minimizing the level or
the reticulation number is equivalent. Indeed, such cluster
sets have the property that any network that represents
them is simple or can easily be made simple (see Lemma 1)
and a simple network contains exactly one nontrivial
biconnected component.

The CASS algorithm can be used as a subroutine in a
divide and conquer algorithm to construct general level-k
networks. We will call this more general algorithm
CASSDC. The basic idea of CASSDC is that it transforms
each connected component of IGðCÞ into a tangled set of
clusters, runs CASS separately on each of these tangled
sets, and combines the resulting simple networks into a
single final network N (Recall that tangled cluster sets are
separating). The final network N has reticulation number
equal to the sum of the reticulation number of the simple

networks produced by CASS, and N has level equal to the
maximum level ranging over all the simple networks. For
more details on the divide and conquer strategy, see [27]
and [4, Section 8.2].

In [27], the authors proved that if there is a level-� 2
network that represents C, then CASSDC will find such a
solution with minimal level. Here, we clarify several other
properties of the algorithm. On the negative side we show
(using a special separating cluster set) that the CASS

algorithm does not in general minimize level. On the
positive side we show that when the input set C is equal to
ClðfT1; T2gÞ for any two (not necessarily binary) trees,
CASSDC correctly minimizes level. In fact, we show some-
thing even stronger: in this case CASSDC also correctly
constructs networks with minimum reticulation number,
which in turn is exactly equal to the hybridization number
of the two input trees, i.e., the number of reticulations
required to display the trees themselves. We conclude with
several open questions regarding CASS.

7.1 Cass: The High-Level Idea

Let N be a network that represents a set of clusters C on X .
Let S be a nontrivial ST-set with respect to C. We say that S
is under a cut-edge if N contains a cut-edge ðu; vÞ such that
the subnetwork rooted at v is a tree that represents CjS.

The next two results formed (implicitly) the direct
inspiration for CASS, which was designed to be a general-
ization of these results.

Lemma 11. Let N be a network that represents a set of clusters C
on X . Let S be a nontrivial ST-set with respect to C. Then,
there exists a network N 0 such that rðN 0Þ � rðNÞ,
‘ðN 0Þ � ‘ðNÞ, S is under a cut-edge in N 0 and for each ST-
set S0 such that S0 \ S ¼ ; and S0 is under a cut-edge in N , S0

is also under a cut-edge in N 0.

Proof. Deferred to the Appendix, which can be found on the
Computer Society Digital Library. tu

The following corollary follows from the fact that
maximal ST-sets are disjoint:

Corollary 11. Let N be a network that represents a set of clusters
C. There exists a network N 0 such that rðN 0Þ � rðNÞ, ‘ðN 0Þ �
‘ðNÞ and all maximal ST-sets (with respect to C) are below
cut-edges.

The pseudocode for CASS was originally given in [27].
That exposition is however rather dense and technical. See
[4, Section 8.5] for a clearer detailed description. Here, we
only give the core idea of the algorithm. Let us assume
without loss of generality that we want to know, given a
separating set of clusters, whether a simple network solution
exists with reticulation number exactly k, for some constant k.

CASS tries to answer this by searching through the space
of all maximal ST-set tree sequences of length at most k,
attempting to build a network with reticulation number k
from each one. It looks first at shorter maximal ST-set tree
sequences, padding those of length less than k with empty
ST-sets to attain a sequence of length exactly k. (As in the
proof of Theorem 2, this models the situation when
removing a single SBR causes the reticulation number to
drop by more than 1). If there are no maximal ST-set tree
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sequences of length at most k then CASS will correctly
report that no solutions with reticulation number k or lower
exist. Hence, CASS implicitly computes and incorporates the
MST lower bound.

Assuming maximal ST-set tree sequences of length at
most k do exist, CASS examines each one to determine
whether it can be constructively turned into a real solution.
Let S ¼ ðS1; . . . ; SkÞ be a (possibly padded) maximal ST-set
tree sequence of length-k for C. As in earlier sections we
define Ci, 1 � i � k, as C n S1 n � � � n Si, and we let C0 ¼ C.
CASS does not however work with the set Ci. Instead it
works with C0i which is obtained from each Ci by
“collapsing” every maximal ST-set S with respect to Ci into
a single new “metataxon.” This is an extremely greedy step,
and is in some sense an attempt to generalize Corollary 11.
The informal motivation is this: we know from Corollary 11
that there exists some network N with a minimum number
of reticulations such that all maximal ST-sets are under cut-
edges. Suppose we guess an SBR T on X0 � X (where X0 is a
maximal ST-set) of N ; we only have to make polynomially
many guesses because there are only polynomially many
maximal ST-sets. This gives a new network N 0 on X n X0
where perhaps not all maximal ST-sets (with respect to
C n X0) are under cut-edges. In particular, some SBRs of N 0

might correspond to nonmaximal ST-sets, of which there
are potentially exponentially many, so how do we effi-
ciently guess an SBR of N 0? Fortunately, we can transform
N 0 (in the sense of Corollary 11) to obtain a new network N 00

such that rðN 00Þ � rðN 0Þ and where all maximal ST-sets
(with respect to C n X0) are under cut-edges of N 00. Hence,
we know that we again only have to make polynomially
many guesses to locate an SBR of N 00. Furthermore, CASS

assumes that these maximal ST-sets will always remain
below cut edges, so it collapses them into the aforemen-
tioned metataxa. We iterate this entire process k times,
concluding the “inward” phase of CASS.

This assumption is important because it affects the
“outward” phase of CASS, which begins immediately after
completion of the inward phase. As in, for example,
Theorem 2 the general idea is to start with a tree that
represents Ck and then to work backward, first trying all
pairs of edges from which to “hang back” a SBR
corresponding to Sk, then all pairs of edges (of the resulting
network) from which to hang back an SBR corresponding to
Sk�1, and so on, down to S1. However, before hanging back
each Si it first decollapses the maximal ST-sets that were
collapsed into metataxa during the corresponding iteration
of the inward phase.

In Section A.2 of the Appendix, which can be found on
the Computer Society Digital Library, we will explicitly and
exhaustively walk through a specific execution of the CASS

algorithm and this is helpful for clarifying exactly how the
algorithm works.

7.2 The CASS Algorithm Is Not Always Optimal

In this section, we present a counter example proving that
the CASS algorithm does not always minimize level.

Consider the set T 4 of four binary trees shown in Fig. 9.
It is easy to verify that the set C ¼ ClðT Þ is separating and
every network that represents C is thus simple or can easily
be made simple. It is also easy to verify that the simple
level-3 network in Fig. 10a represents C; in the Appendix,
which can be found on the Computer Society Digital

Library, we prove that this is optimal by showing that any
network that represents C must have reticulation number 3
or higher.

However, CASS cannot find a level-3 network. To
formally prove this we show in Section A.2 of the
Appendix, which can be found on the Computer Society
Digital Library, an exhaustive list of all possible executions
of the algorithm with k ¼ 3. CASS returns the simple level-
4 network shown in Fig. 10b. To summarize, the problem
with CASS seems to be that while the step of always
collapsing at every iteration all maximal ST-sets and
treating them as metataxa (in the sense of Corollary 11)
is a locally optimal move, it can force us to use too many
reticulation edges when hanging (trees corresponding to)
maximal ST-sets back in the outward phase.

Note that this counter example fits in a tradition of
highly specific and complex counter examples in the
phylogenetic network literature. In particular, we note the
very similar counter examples given initially in [22], and
(based on this) in [7], which showed that one cannot
minimize reticulation number by optimizing independently
over the connected components of the incompatibility
graph IGðCÞ.3 The relationship between these counter
examples—all of which are linked in some way or other
to simple level-3 networks—seems to be that networks with
minimum reticulation number have a very subtle internal
structure that seems impervious to locally optimal and
greedy strategies, but that these properties only start
emerging for level-3 and higher.

It is important to emphasize, however, that since we
could not find any nonsynthetic data sets for which CASS

does not find an optimal solution, we still have the feeling
that CASS works quite well for real data.

7.3 CASS Is Optimal for Sets of Clusters Obtained
from Two Trees

Here we show that, despite the negative news in the
previous section, CASS (and more generally CASSDC)
correctly minimizes level in the case of clusters obtained
from two not necessarily binary trees. Furthermore, the
algorithms also provably minimize reticulation number. (It
is interesting to note that it is not known whether CASS or
CASSDC correctly minimizes level in the case of clusters
obtained from three trees).
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3. In [22], both single crossover and multiple crossover recombination
models are considered, where the latter model is very similar to the
softwired cluster model, see, e.g., [8]. The network in [22] which resembles
Fig. 10a is used in the context of multiple crossover recombination.

Fig. 10. (a) A simple level-3 network and (b) a simple level-4 network,

both representing ClðT Þ where T is defined as described in Fig. 9. The

level-4 network was produced by CASSDC.



Note that the following theorem does not contradict the
NP-hardness mentioned in Corollary 10 because CASS only
runs in polynomial time when it bounds its search to simple
level-� k networks, for a constant k.

Theorem 4. Let C ¼ ClðT Þ be a separating set of clusters where
T is a set of two not necessarily binary trees on X . Then CASS

constructs a simple network N that represents C such that
‘ðNÞ ¼ rðNÞ ¼ ‘ðCÞ ¼ rðCÞ.

Proof. Let the MST lower bound for C be p. Recall that, by
Corollary 9, in this case p ¼ rðNÞ. We know that there is a
maximal ST-set tree sequence ðS1; . . . ; SpÞ. As explained
in Section 7.1, CASS will eventually find this maximal ST-
set tree sequence. Now, Theorem 3 essentially works by
invoking Lemma 10 p times, and in the statement of
Lemma 10 there are absolutely no assumptions made
about the structure of “N ,” other than that it represents a
certain set of clusters. Hence, “N” can just as well be one
of the intermediate networks constructed by CASS. It
remains only to show that CASS can simulate the
hanging-back construction described in the proof of
Lemma 10. This is definitely so, because the proof of
Lemma 10 requires the edges entering two witnesses (or
the edge entering one witness and, to simulate the
attachment of a root edge, the edge connecting a dummy
root to the real root) to be subdivided. CASS tries
subdividing all pairs of edges, including the edge
between the dummy root and the real root, and hence
will eventually subdivide the correct two edges. (Note
that this theorem does not hold for three or more trees
because per iteration it might be necessary to subdivide
three or more edges, i.e., to increase the reticulation
number by more than 1). tu
The proof of Theorem 4 not only shows that CASS is

optimal for sets of clusters obtained from two not
necessarily binary trees, but also that in this very special
case the “hanging back” (i.e., outward) phase of CASS is in
some sense completely redundant. In particular: if we have
already computed a maximal ST-set tree sequence, then we
can easily compute a witness set for each of the maximal ST-
sets in the sequence, and these witness sets directly specify
a sufficient set of edges to subdivide when hanging back the
maximal ST-sets. So in the case of clusters coming from two
trees CASS wastes rather a lot of time trying to hang back
maximal ST-sets from all possible pairs of edges, when in
fact the information is already available to make this blind
search unnecessary. Theorem 4 can actually be reformu-
lated and extended to general (i.e., not necessarily separat-
ing) sets of clusters C obtained from two not necessarily
binary trees. Indeed, in Theorem 6, we will prove that, for
such cluster sets, CASSDC reconstructs a network N such
that rðNÞ ¼ rðCÞ and ‘ðNÞ ¼ ‘ðCÞ. However, we first need to
prove Theorem 5 below, which is interesting in its own
right, and several auxiliary results.

Observation 6. Let C be a set of clusters on X and let U � X be
compatible with C. Then, for any P � X , U n P is compatible
with CjðX n P Þ.

Proof. U is compatible with C so for each cluster C 2 C we
have either that C \ U ¼ ;, C � U , or U � C. For the
case C \ U ¼ ; it is clear that ðCnP Þ \ ðUnP Þ ¼ ;. For
the case C � U we have that ðCnP Þ�ðU n P Þ, and for
the case U � C we have that ðUnP Þ � ðCnP Þ. tu

Observation 7. Let C be a set of clusters on X and let U be the
union of the set of clusters in a connected component K of
IGðCÞ. Then, U is compatible with C.

Proof. Suppose U is not compatible with C . Then, there
must exist some C 2 C such that C 6� U , U 6� C, and
C \ U 6¼ ;. Clearly, C cannot be incompatible with any
cluster in the connected component K, because then C
would also be in the connected component K and thus
C � U . Hence, every cluster in the connected compo-
nent K is either disjoint from C, or a subset of it, and
there is at least one of each type of cluster because U n
C 6¼ ; and U is the union of all the clusters in K.
However, clusters in K that are disjoint from C, are
always compatible with clusters in the connected
component that are contained inside C, so the connected
component is not connected, contradiction. tu

Observation 8. Given a set of clusters C on X , let S be an ST-set
with respect to C and let U be a set such that U is compatible
with C and U � S. Then, U is also an ST-set for C.

Proof. We only need to show that all pairs of clusters in CjU
are compatible. Clearly, for each C 2 C we have that
CjU � U . Now, recall that, becauseU is compatible with C,
for each C 2 Cwe have either C � U , U � C or C \ U ¼ ;.
Suppose by contradiction that for someC1 6¼ C2 2 CjU ,C1

and C2 are incompatible. But then ; � C1; C2 � U . But in
that case C1; C2 2 C and C1; C2 � S, contradicting the fact
that S was an ST-set. tu
For a set of clusters C and a set U that is compatible with

C, CU!u denotes the new cluster set obtained by replacing all
elements of U with a single new taxon u (i.e., “collapsing” U
into a single taxon).

Theorem 5. Let T ¼ fT1; T2g be two not necessarily binary trees
on X , and let C ¼ ClðT Þ. Let U � X be a set compatible with
C. Then, rðCÞ ¼ rðCjUÞ þ rðCU!uÞ.

Proof. Let p ¼ rðCÞ. We know by Corollary 9 that there
exists a maximal ST-set tree sequence ðS1; . . . ; SpÞ. As
usual we define Ci, 1 � i � p, as CnS1n � � � nSi, and we let
C0 ¼ C. We let X i ¼ [C2CiC where X0 ¼ X . (Note that
X i ¼ XnS1n � � � nSi). Since UnS1n � � � nSi ¼ X i \ U , by re-
peated application of Observation 6, X i \ U is compatible
with Ci for 0 � i � p. Now, recall (see proof of Lemma
10) that for each Si we can identify a set of two witnesses
(where perhaps one of the witnesses is the symbol �
representing the root).

Here we show, for each Si, how to hang back a tree
representing Ci�1jSi from a network N representing Ci to
obtain a network N 0 representing Ci�1 where rðN 0Þ ¼
rðNÞ þ 1 and in N 0 the taxa X i�1 \ U are exactly the set of
taxa below some cut-edge. The witnesses of Si guide us
how to do this. If we repeat this p times we will obtain a
network with p reticulations (and reticulation number p)
that represents C and such that the taxa inU are exactly the
subset of taxa below some cut-edge. The theorem will then
follow.

The first thing to do is to study the earliest point at
which some elements of U are added back into the
network. This is an important “base case.” Let us, thus,
consider the largest value of i such that X i \ U 6¼ ;. Let
i0 be equal to this value. Now, suppose i0 ¼ p. We saw
that by repeated application of Observation 6 Xp \ U is
compatible with Cp. Furthermore, we know that the
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clusters Cp can be represented by a tree, so X p \ U is
actually an ST-set. Hence, we can assume without loss
of generality (by Lemma 11) that the tree that represents
Cp, has a cut-edge such that Xp \ U is exactly the set of
taxa beneath it. Alternatively, suppose i0 < p. In this
case, the first elements of U that are reintroduced into
the network are a (not necessarily strict) subset of Si0þ1,
so we have X i0 \ U ¼ Si0þ1 \ U . Given that X i0 \ U is
compatible with Ci0 , and Si0þ1 \ U is a subset of an ST-
set, it follows by Observation 8 that Si0þ1 \ U is also an
ST-set. We may thus assume without loss of generality
that X i0 \ U is exactly the set of taxa below a cut-edge
(again thanks to Lemma 11).

Henceforth, we may assume that the networkN that we
want to hang (a tree corresponding to) Ci�1jSi back from,
contains at least one taxon ofU . We will make heavy use of
this fact. Let e be the cut-edge of N which the elements of
X i \ U are below. Let w1; w2 be the two witnesses for Si,
where in some cases w2 ¼ � (representing the root).

There are several cases to consider. The first case is
when the tree that we are hanging back, is disjoint from
U . See also Fig. 11.

Case 1: Si \ U ¼ ;.
Subcase 1.1: fw1; w2g \ U ¼ ;. In this case, we can

simply hang back from fw1; w2g because we are not
adding any new elements of U and we are not
subdividing any edge reachable from e. Hence, e remains
the cut-edge which all present elements of U are below.

Subcase 1.2: fw1; w2g � U . This case cannot actually
occur because it saves a reticulation and hence implies
that rðCÞ < p. Indeed, if we simply hang Si back from
fw1; w2g then we obtain a network that represents Ci�1.
However, we see from this that every cluster C in Ci�1

that is a strict superset of Si, must contain at least one
element of U . Si is disjoint from U so, since U is
compatible with C, C must also contain all other elements
of U in the network. Hence, we do not actually need to
put Si below a reticulation at all: we can simply attach it
to a single new cut-edge that subdivides e.

Subcase 1.3 (wlog): w1 2 U , w2 62 U . Suppose we
simply hang back from fw1; w2g, obtaining a network
N 0 that represents Ci�1. Note that after doing this any
cluster that passes through the reticulation edge starting
just above w1, must (again because U is compatible with
C) contain all elements of U that are in the network. So
we can subdivide the cut-edge e and move the tail of that
reticulation edge to the newly created vertex.

The next case is when all elements of Si are in U , see
also Fig. 12.

Case 2: Si � U .

Subcase 2.1: fw1; w2g \ U ¼ ;. Again, this case cannot
actually happen because it saves a reticulation: see
subcase 1.2. Indeed, also in this case we don’t need a
reticulation at all: we can just hang Si from a single new
cut-edge that subdivides e.

Subcase 2.2: fw1; w2g � U . This case is fine because if
we hang back from w1 and w2 all the elements of U
remain below the cut-edge e.

Subcase 2.3 (wlog): w1 2 U , w2 62 U . Suppose we hang
back from w1 and w2 to obtain a network that represents
Ci�1. In this case, we could move the reticulation edge
that starts just above w2 (or at the root, in the case that
w2 ¼ �) to subdivide the cut-edge e.

The final case is where S contains at least one element
of U and at least one element not in U . See also Fig. 13.
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Fig. 11. The three subcases covered by Case 1, which concerns the case when the ST-set Si that is being hung back, is disjoint from U. The parts of
the network containing elements of U are depicted in gray.

Fig. 12. The three subcases covered by Case 2, which concerns the case when the ST-set Si that is being hung back, is a subset of U. The parts of

the network containing elements of U are depicted in gray.



Case 3: Si \ U 6¼ ; and Si n U 6¼ ;. In this case, we will
apply a transformation which brings us back into Case 2.
Let R ¼ Si n U . Suppose we hang Si back from its two
witnesses w1 and w2, to obtain a network N 0 that
represents Ci�1. Consider any cluster C 2 Ci�1 such that
C \R 6¼ ;. Then, either C � R or X i�1 \ U � C. (The
second condition holds because, if C 6� R, then it must
contain some element in Si \ U , and hence all elements
of U in the network). So a cluster C that is a strict subset
of Si is either a subset of R or disjoint from R. Indeed, if
C contains one element of R and one of the set U , C must
contain all elements of U , a contradiction since C is a
strict subset of Si. It follows that R is compatible with
Ci�1 so by Observation 8; R is an ST-set. Hence, we may
assume (without loss of generality) that R is the taxa set
of some subtree T 0 below a cut-edge in the tree
representing Ci�1jSi that we hung back. Now, we can
prune T 0 and regraft it back onto the network at a new
vertex obtained by subdividing e. It can be verified that
after this prune/regraft move the resulting network still
represents Ci�1. It remains only to apply Case 2, taking
w1; w2 as the witnesses and Si nR as the ST-set that we
want to hang back. tu

Theorem 6. Let T ¼ fT1; T2g be two not necessarily binary trees

on X , and let C ¼ ClðT Þ. When given C as input, CASSDC

computes a level-‘ðCÞ network N with reticulation number

rðCÞ that represents C.
Proof. Observation 7 and Theorem 5 ensure that we can

analyze each connected component of the incompatibility

graph IGðCÞ separately, which (as mentioned) is exactly

what CASSDC does. (To see this it is helpful to note that

any subset of C can also, with the possible exception of

some superfluous singleton clusters, be expressed as the

set of clusters in two trees).
Let K be a connected component and denote by CK

the set of clusters in K. Let XK be the set of taxa equal to
the union of all clusters in CK . Note that CK is not
necessarily a tangled set. Indeed, while IGðCKÞ is
connected, the second property of a tangled set (every
size-2 subset of XK is incompatible with CK, Section 2)
does not always hold. To ensure that the latter condition
holds CASSDC simply computes all the maximal ST-sets
fS1; . . . ; Skg for CK and for each of them replaces all
elements of Si with a single new taxon si in CK , to obtain
a new cluster set C0K that is tangled.

To see that the constructed network has minimum
level, observe that (by Theorem 4) CASS correctly
computes minimum level solutions for the C0K cluster
sets mentioned above. In [27], it is proven that combining
minimum-level solutions for the various C0K yields a
minimum-level solution for C.

We now need to prove that the constructed network
has reticulation number rðCÞ. Since maximal ST-sets of
CK are compatible with CK and all mutually disjoint (see
Corollary 4), it follows from Theorem 5 that

rðCKÞ ¼
X

S is a maximal
ST-set of CK

rðCK jSÞ þ rðC0KÞ:

Since rðCK jSÞ always equals zero when S is an ST-set,
rðCKÞ ¼ rðC0KÞ. Moreover, since the sets XK are compa-
tible with C (from Observation 7) and all mutually
disjoint, then from Theorem 5 we have that

rðCÞ ¼
X

K is a connected
component of IGðCÞ

rðCjXKÞ þ rðC0Þ;

where C0 is obtained from C by replacing all elements of
XK with a single new taxon xK . Obviously, rðC0Þ ¼ 0.
Since rðCjXKÞ ¼ rðCKÞ ¼ rðC0KÞ, and rðC0KÞ ¼ ‘ðC0KÞ be-
cause C0K is separating, this concludes the proof that the
constructed network has reticulation number rðCÞ. tu

7.4 CASS Can be Used to Compute the Hybridization
Number of Two Not Necessarily Binary Trees

It is important to understand the relationship between the
results presented in the previous section and the extensive
literature on computing the hybridization distance of two
trees [14], [15], [16], [17], [29], i.e., the problem of displaying
the trees themselves, and not just their clusters.

For two binary trees T ¼ fT1; T2g on X the hybridization
distance hðT Þ is defined as the minimum reticulation
number rtðT Þ of any network that displays both the trees
in T . In [8], we showed that rtðT Þ ¼ rðClðT ÞÞ. As discussed
in [8] that means that both positive and negative results for
the computation of rtðT Þ transfer automatically to compu-
tation of rðClðT ÞÞ (for two binary trees). Negative results
are NP-hardness and APX-hardness; positive results in-
clude fixed parameter tractability and running time im-
provements based on an increasingly deep understanding
of maximum acyclic agreement forests.

Before proceeding there are some technical issues
regarding the definition of hybridization number of a set
T of two not necessarily binary trees on X . This can be
attributed to the fact that several different definitions have
appeared in the literature:

1. hþðT Þ : the minimum reticulation number of N
ranging over all networks N that display in a strict
topological sense all the trees in T . This is exactly the
definition of display given in Section 2. In [8, Fig. 8]
this strict definition was used.

2. h0ðT Þ: the minimum reticulation number of N
ranging over all networks N that display some not
necessarily binary refinement of each tree in T .
Recall that a (binary) refinement of a tree T on X is
any (binary) tree T 0 on X such that ClðT Þ � ClðT 0Þ.
(Note that a tree is generically considered to be a
refinement of itself).
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Fig. 13. Case 3, which concerns the case when the ST-set Si that is
being hung back, contains elements of U and elements not in U. The
parts of the network containing elements of U are depicted in gray. Note
that in this case we do not care where the reticulation edges connect to
the rest of the network. Here, R ¼ Si n U.



3. h�ðT Þ: the minimum reticulation number of N
ranging over all networks N that display a binary
refinement of each tree in T . This was the definition
used in [29].

Two of the definitions, h0 and h�, turn out to be
equivalent. We clarify this, extend an equivalence result
from [8] and thus show that CASSDC correctly computes the
hybridization number of two not necessarily binary trees in
the sense of h0, equivalently h�. In [8, Fig. 8] a set T of two
trees is given, one of which is nonbinary, such that
rðClðT ÞÞ < hþðT Þ. A result showing that CASS computes
hþ was thus already excluded.

Observation 9. h0ðT Þ ¼ h�ðT Þ for all sets T of not necessarily
binary trees on the same taxa set X .

Proof. The fact that h0ðT Þ � h�ðT Þ follows immediately
from the definitions. Suppose by way of contradiction
that there exists a set of not necessarily binary trees T
such that h�ðT Þ > h0ðT Þ. Let N be any network with
reticulation number h0ðT Þ that displays some refine-
ment of each tree in T . Now, it is not too difficult to
see (using, for example, the transformation described in
[8, Lemma 2]) that we can create a binary network N 0

such that rðN 0Þ ¼ rðNÞ and such that N 0 displays a
binary refinement of each of the trees in T , yielding a
contradiction. tu
Given a set of trees T , recall that we define rtrðT Þ to be

the minimum reticulation number of any network that
displays TrðT Þ (i.e., all the rooted triplets in the input trees).
We have the following result:

Theorem 7. Let T ¼ fT1; T2g be two not necessarily binary trees
on X . Then, h0ðT Þ ¼ rtrðT Þ.

Proof. Obviously, for any set T of not necessarily binary
trees on X , rtrðT Þ � h0ðT Þ. It remains to show that this
inequality is always tight. Suppose that it is not always
tight. Let then T ¼ fT1; T2g be two smallest (in terms of
the size of jXj ¼ n) trees such that h0ðT Þ > rtrðT Þ.
Clearly n > 2. Now, let Ntr be any network that is
consistent with TrðT Þ ¼ R such that rðNtrÞ ¼ rtrðRÞ. If
rtrðRÞ ¼ 0 we have a contradiction because this only
occurs if T1 and T2 have a common refinement, in which
case h0ðT Þ ¼ 0. Hence, rtrðRÞ > 0. This means that Ntr

has at least one SBR with taxa set S. Now, we claim that,
for each i 2 f1; 2g, S is the set of taxa reachable from an
edge ei (in Ti) or as the set of taxa reachable from some
subset of the children of some node ui (in Ti). If this is
not so then there exists some triplet xyjz in R such that
x 62 S and y; z 2 S. However, Ntr cannot be consistent
with xyjz since S is the taxa set of a SBR, which by
definition sits below a cut-edge, yielding a contradiction.
(If ei exists assume without loss of generality that ui is its
head). Let Q0 ¼ fv1; . . . ; vkg be the set of children of ui
such that for each v 2 Q0, XðTvÞ contains at least one
element of S. Now let T 0i be the tree Ti n Tv1

. . . n Tvk and
let T 0 ¼ fT 01; T 02g. It is clear that rtrðT 0Þ � rtrðRÞ � 1. By
the assumption of minimality on jXj we have that
h0ðT 0Þ ¼ rtrðT 0Þ. Now, let N� be a network with a
minimum reticulation number that displays some
refinement of each tree in T 0. Observe that there exists
a binary tree TS on taxa set S such that TS is a binary

refinement of both T1jS and T2jS, otherwise RjS would

not be an SBR (i.e., it would contain at least one

reticulation).
But we can obtain a network with rðN�Þ þ 1 reticula-

tions that displays some refinement of T1 and T2 by
hanging TS back below a single new reticulation in N�

such that the tails of the two reticulation edges extend the
embeddings of the refinements of T 01 and T 02 inN�. Hence,
h0ðT Þ � rtðT 0Þ þ 1 � rtðT Þ < h0ðT Þ, contradiction. tu
The following lemma extends a result from [8]:

Lemma 12. If T consists of two not necessarily binary

phylogenetic trees on the same set of taxa, rtrðT Þ ¼ h0ðT Þ ¼
rðClðT ÞÞ.

Proof. In [8], it is proven that for a not necessarily binary

set of trees T on the same set of taxa, rtrðT Þ � rðClðT ÞÞ.
Now, if a network displays some refinement of a not

necessarily binary tree T , then it represents all the

clusters in ClðT Þ (and possibly more). Hence, we also

have that rðClðT ÞÞ � h0ðT Þ. Combining this with

Theorem 7 gives the result. tu
Combining all these results we finally obtain the

following theorem.

Theorem 8. Let T ¼ fT1; T2g be two not necessarily binary trees

on X , and let C ¼ ClðT Þ. When given C as input, CASSDC

computes a network N such that rðNÞ ¼ h0ðT Þ ¼ h�ðT Þ.

8 CONCLUSION AND OPEN PROBLEMS

The largest open problem emerging from this paper is

whether there exists a “reasonable” polynomial-time algo-

rithm for constructing phylogenetic networks of bounded

reticulation number (or level) that represent a given set of

clusters. The result in Section 3, which shows a theoretical

polynomial-time algorithm for constructing networks of

bounded level, does not lend itself to a real-world

implementation. On the other hand, we have seen that for

clusters obtained from binary trees a relatively simple and

efficient algorithm can be used. At the moment, however,

there is no reasonable polynomial-time algorithm for

general cluster sets, i.e., those obtained from sets of

potentially nonbinary trees. We have shown that CASS,

which has a reasonable running time, is in general not

optimal (although we had to explicitly engineer a highly

synthetic counter example to determine this). CASS is,

however, an extremely greedy algorithm, in the sense that at

every iteration it assumes that all maximal ST-sets are below

cut edges. Can we relax this assumption in some way to

yield a slightly less greedy version of CASS that is optimal?

A less urgent problem, but nevertheless very interesting, is

the question whether CASS is optimal for clusters obtained

from exactly three binary trees on X .
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University of Tübingen, she joined the Institut
des Sciences de l’Evolution de Montpellier
(ISEM) as research associate in October
2011. Her research interests include parame-
terized complexity, supertree, and network
methods for phylogenetics, combinatorics, and
bioinformatics.

Leo van Iersel received the MSc degree in 2004
at Twente University and the PhD degree in
2009 at Eindhoven University, both in The
Netherlands. Subsequently, he worked as a
postdoctoral researcher at the University of
Canterbury in Christchurch, New Zealand, until
mid 2010. After one year teaching in East Africa,
he will start another postdoctoral research
position at CWI in Amsterdam, The Netherlands.
His research is concerned with the construction

of phylogenetic trees and networks from biological data.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

534 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 2, MARCH/APRIL 2012



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


